Robotic Thermoregulation for Material Identification using Recycled Inner-Generated Motor Heat.

2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)(2023)

引用 0|浏览2
暂无评分
摘要
The heat generated inside robots originates mainly from energy loss in actuators, onboard electronic circuits, and computation processing units. Typically, it can be dissipated by forced air (most commonly used in robotics) or fluid convection. In this study, we developed a recycled inner-generated heat system inspired by biological thermoregulation mechanism, utilizing the inner heat to the robot’s thermal perceptions of a finger-pad (by analogy to human fingertip) for object haptic recognition. Among the fingertips’ thermal perceptions, material recognition identifies and distinguishes touched objects, even if the color, stiffness, or roughness are similar. This recognition approach requires a heat source to induce temperature changes at the contact surface to recognize ambient (room) temperature objects. We use an actuator that generates heat in a closed-flow water circuit (by analogy to human cardiovascular system) to induce heat at contact like humans with body temperature and touch. Our thermal method is assessed through experimental simulations of robotic water circulation and a pump system (by analogy to human heart) with the developed finger-pad. The proposed strategy enables it to completely classify three kinds of material covering the same material in 0.7 sec touch.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要