Dissecting an ancient stress resistance trait syndrome in the compost yeast Kluyveromyces marxianus

Kaylee E. Christensen, Abel Duarte, Zhenzhen Ma, Judith L. Edwards,Rachel B. Brem

bioRxiv the preprint server for biology(2023)

引用 0|浏览6
暂无评分
摘要
In the search to understand how evolution builds new traits, ancient events are often the hardest to dissect. Species-unique traits pose a particular challenge for geneticists—cases in which a character arose long ago and, in the modern day, is conserved within a species, distinguishing it from reproductively isolated relatives. In this work, we have developed the budding yeast genus Kluyveromyces as a model for mechanistic dissection of trait variation across species boundaries. Phenotypic profiling revealed robust heat and chemical-stress tolerance phenotypes that distinguished the compost yeast K. marxianus from the rest of the clade. We used culture-based, transcriptomic, and genetic approaches to characterize the metabolic requirements of the K. marxianus trait syndrome. We then generated a population-genomic resource for K. marxianus and harnessed it in molecular-evolution analyses, which found hundreds of housekeeping genes with evidence for adaptive protein variation unique to this species. Our data support a model in which, in the distant past, K. marxianus underwent a vastly complex remodeling of its proteome to achieve stress resistance. Such a polygenic architecture, involving nucleotide-level allelic variation on a massive scale, is consistent with theoretical models of the mechanisms of long-term adaptation, and suggests principles of broad relevance for interspecies trait genetics. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要