DyMnO3: Synthesis, Characterization and Evaluation of Its Photocatalytic Activity in the Visible Spectrum

Miguel Angel Lopez-Alvarez,Pedro Ortega-Gudino,Jorge Manuel Silva-Jara,Jazmin Guadalupe Silva-Galindo,Arturo Barrera-Rodriguez, Jose Eduardo Casillas-Garcia,Israel Ceja-Andrade, Jesus Alonso Guerrero-de Leon, Carlos Alberto Lopez-de Alba

MATERIALS(2023)

Cited 0|Views5
No score
Abstract
DyMnO3 is a p-type semiconductor oxide with two crystal systems, orthorhombic and hexagonal. This material highlights its ferroelectric and ferromagnetic properties, which have been the subject of numerous studies. Nevertheless, its photocatalytic activity has been less explored. In this work, the photocatalytic activity of DyMnO3 is evaluated through the photodegradation of MG dye. For the synthesis of this oxide, a novel and effective method was used: polymer-decomposition. The synthesized powders contain an orthorhombic phase, with a range of absorbances from 300 to 500 nm and a band gap energy of 2.4 eV. It is also highlighted that, when using this synthesis method, some of the main diffraction lines related to the orthorhombic phase appear at 100(degrees)C. Regarding its photocatalytic activity, it was evaluated under visible light (lambda = 405 nm), reaching a photodegradation of approximately 88% in a period of 30 min. Photocurrent tests reveal a charge carrier separation (e(-),h(+)) at a 405 nm wavelength. The main reactive oxygen species (ROS) involved in the photodegradation process were radicals, OH center dot , and photo-holes (h(+)). These results stand out because it is the first time that the photodegradation capability of this oxide in the visible spectrum has been evaluated.
More
Translated text
Key words
DyMnO3,photocatalysis,malachite green dye,visible-light photocatalyst
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined