Effect of Amino-Functionalized Polyhedral Oligomeric Silsesquioxanes on Structure-Property Relationships of Thermostable Hybrid Cyanate Ester Resin Based Nanocomposites

POLYMERS(2023)

Cited 0|Views2
No score
Abstract
Nanocomposites of cyanate ester resin (CER) filled with three different reactive amino-functionalized polyhedral oligomeric silsesquioxane (POSS) were synthesized and characterized. The addition of a small quantity (0.1 wt.%) of amino-POSS chemically grafted to the CER network led to the increasing thermal stability of the CER matrix by 12-15 degrees C, depending on the type of amino-POSS. A significant increase of the glass transition temperature, T-g (DSC data), and the temperature of alpha relaxation, T-alpha (DMTA data), by 45-55 degrees C of the CER matrix with loading of nanofillers was evidenced. CER/POSS films exhibited a higher storage modulus than that of neat CER in the temperature range investigated. It was evidenced that CER/aminopropylisobutyl (APIB)-POSS, CER/N-phenylaminopropyl (NPAP)-POSS, and CER/aminoethyl aminopropylisobutyl (AEAPIB)-POSS nanocomposites induced a more homogenous alpha relaxation phenomenon with higher T-alpha values and an enhanced nanocomposite elastic behavior. The value of the storage modulus, E ', at 25 degrees C increased from 2.72 GPa for the pure CER matrix to 2.99-3.24 GPa for the nanocomposites with amino-functionalized POSS nanoparticles. Furthermore, CER/amino-POSS nanocomposites possessed a higher specific surface area, gas permeability (CO2, He), and diffusion coefficients (CO2) values than those for neat CER, due to an increasing free volume of the nanocomposites studied that is very important for their gas transport properties. Permeability grew by about 2 (He) and 3.5-4 times (CO2), respectively, and the diffusion coefficient of CO2 increased approximately twice for CER/amino-POSS nanocomposites in comparison with the neat CER network. The efficiency of amino-functionalized POSS in improving the thermal and transport properties of the CER/amino-POSS nanocomposites increased in a raw of reactive POSS containing one primary (APIB-POSS) < eight secondary (NPAP-POSS) < one secondary and one primary (AEAPIB-POSS) amino groups. APIB-POSS had the least strongly pronounced effect, since it could form covalent bonds with the CER network only by a reaction of one -NH2 group, while AEAPIB-POSS displayed the most highly marked effect, since it could easily be incorporated into the CER network via a reaction of -NH2 and -NH- groups with -O-C equivalent to N groups from CER.
More
Translated text
Key words
cyanate ester resin,amino-POSS,polycyanurate,glass transition temperature,thermal stability,gas permeability
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined