Modelling and Simulation of Planar Heterojunction Perovskite Solar Cell featuring CH3NH3PbI3, CH3NH3SnI3, CH3NH3GeI3 Absorber Layers

Silicon(2023)

引用 0|浏览0
暂无评分
摘要
Currently, organic–inorganic metal halide perovskite material based Photovoltaic cell have achieved an impressive level of success due to their unique properties in the photovoltaic industry. In this paper, primary goal is to examine and compare the characteristics of performance of Pb, Sn and Ge perovskite solar cell structure with additional hole transport and back surface field layer of group IV alloy to achieve the improved efficiency. The simulated device structure consists of electron transport/absorber/hole-transport/back surface field layers where SnO2 material used for electron transport layer (ETL), SiGe and Spiro-OMeTAD materials used for transporting hole layers (HTLs), back-surface field (BSF) layer is of SiGeSn and perovskite absorber layer material are CH3NH3PbI3, CH3NH3SnI3, CH3NH3GeI3, respectively. A comparative analysis is made between three different solar cell structures which is based on Pb, Sn and Ge perovskite material. Higher conversion efficiency is obtained with Pb perovskite solar cell in comparison to Sn and Ge based solar cells. CH3NH3PbI3 exhibits better conversion efficiency as compared to the CH3NH3SnI3 and CH3NH3GeI3 while using the same layer thickness.
更多
查看译文
关键词
CH3NH3PbI3,CH3NH3SnI3,CH3NH3GeI3,SnO2,SiGe,HTL,BSF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要