LSTM time series NDVI prediction method incorporating climate elements: A case study of Yellow River Basin, China

JOURNAL OF HYDROLOGY(2024)

引用 0|浏览5
暂无评分
摘要
Accurate prediction of the trend of Normalized Difference Vegetation Index (NDVI) time series in the Yellow River Basin (YRB) is crucial for the assessment of the hydrological and ecological environment in this region. Currently, the NDVI time series prediction model is primarily based on traditional models and single-variable neural network models. Nevertheless, these models present challenges in considering the limitations of multiple factors, causing the NDVI time series prediction results to lack reliability. To predict NDVI time-series in the YRB of China, this study constructed a multilayer multivariate Long-Short Term Memory (LSTM) neural network model including climatic components. The initial important climatic elements in this region were identified using GeoDetector. Then, the relationship between NDVI and climatic factors in the YRB of China is established. Finally, numerical scale data are used to train and predict a multilayer multivariate LSTM model with climatic components. According to the results, the three-layer multivariate LSTM neural network NDVI time series prediction model developed in this study has the best performance among the evaluated indices. When compared to existing time series prediction models, the proposed model in this study takes into account the common constraint effect of various climate factors on NDVI. This leads to a significantly improved prediction accuracy, presenting new opportunities for enhancing the prediction model. By analyzing the NDVI time series prediction outcomes for the YRB, it has been determined that the ecological environment of the area will continuously improve in the future. This study offers significant technological and theoretical backing for assessing the hydrological and ecological environment of the YRB and comparable ecologically vulnerable regions in China.
更多
查看译文
关键词
NDVI time series prediction,Multivariate LSTM,Climate Elements,Deep Learning,Yellow River Basin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要