Amine-functionalized Schiff base covalent organic frameworks supported PdAuIr nanoparticles as high-performance catalysts for formic acid dehydrogenation and hexavalent chromium reduction.

Journal of colloid and interface science(2023)

Cited 0|Views10
No score
Abstract
Formic acid (FA) holds significant potential as a liquid hydrogen storage medium. However, it is important to improve the reaction rates and extend the practical applications of FA dehydrogenation and Cr(VI) reduction through the development of efficient heterogeneous catalysts. This study reports the synthesis of a uniformly dispersed PdAuIr nanoparticles (NPs) catalyst loaded with amine groups covalent organic frameworks (COFs). The alloyed NPs demonstrated exceptional effectiveness in FA dehydrogenation rate and Cr(VI) reduction. The initial turnover of frequency (TOF) value for FA dehydrogenation without additives was 9970 h-1 at 298 K, the apparent activation energy (Ea) was 30.3 kJ/mol and the rate constant (k) for Cr(VI) reduction was 0.742 min-1. Additionally, it showcased the ability to undergo recycling up to six times with minimal degradation in performance. The results indicate that its remarkable catalytic performance can be attributed primarily to the favorable mass transfer attributes of the aminated COFs supports, the strong metal-support interaction (SMSI), and the synergistic effects among the metals. This study offers a novel perspective on the advancement of efficient and durable heterogeneous catalysts with diverse capabilities, thereby making significant contributions to the fields of energy and environmental preservation.
More
Translated text
Key words
Covalent organic frameworks,Formic acid dehydrogenation,Hexavalent chromium (Cr(VI)),PdAuIr alloys
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined