High-resolution spectroscopic study of extremely metal-poor stars in the Large Magellanic Cloud

W. S. Oh, T. Nordlander,G. S. Da Costa, M. S. Bessell, A. D. Mackey

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
We present detailed abundance results based on UVES high dispersion spectra for 7 very and extremely metal-poor stars in the Large Magellanic Cloud. We confirm that all 7 stars, two of which have [Fe/H] ≤ –3.0, are the most metal-poor stars discovered so far in the Magellanic Clouds. The element abundance ratios are generally consistent with Milky Way halo stars of similar [Fe/H] values. We find that 2 of the more metal-rich stars in our sample are enhanced in r-process elements. This result contrasts with the literature, where all nine metal-poor LMC stars with higher [Fe/H] values than our sample were found to be rich in r-process elements. The absence of r-process enrichment in stars with lower [Fe/H] values is consistent with a minimum delay timescale of ∼100 Myr for the neutron star binary merger process to generate substantial r-process enhancements in the LMC. We find that the occurrence rate of r-process enhancement (r-I or r-II) in our sample of very and extremely metal-poor stars is statistically indistinguishable from that found in the Milky Way's halo, although including stars from the literature sample hints at a larger r-II frequency the LMC. Overall, our results shed light on the earliest epochs of star formation in the LMC that may be applicable to other galaxies of LMC-like mass.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要