Two-dimensional cobalt ferrite through direct chemical vapor deposition for efficient oxygen evolution reaction

CHINESE JOURNAL OF CATALYSIS(2023)

引用 0|浏览4
暂无评分
摘要
Two-dimensional (2D) transition metal oxides (TMOs) are promising electrocatalysts for the new energy industry, owing to their earth-abundancy, excellent performance, and unique physicochemical properties. However, microscopic electrochemical study for 2D TMOs is still lacking to provide detailed electrocatalytic mechanisms due to the challenges in synthesizing 2D TMOs with high quality and controlled thickness, which is indispensable for the microscopic studies. In this study, we report the direct synthesis of 2D cobalt ferrite (CoFeO) using a chemical vapor deposition (CVD) method. The as-synthesized 2D CoFeO possesses a well-crystallized spinel structure with an ultrathin thickness of 6.8 nm. Its oxygen evolution reaction (OER) properties under alkaline conditions were accurately assessed using an ultra-microelectrode testing platform. The (111) facet of the 2D CoFeO exhibits a low overpotential of 330 mV at a current density of 10 mA cm(-2) and a high current density of similar to 142 mA cm(-2) at an overpotential of 570 mV. The OER mechanism of the 2D CoFeO was analyzed using density functional theory (DFT) calculations, which reveal the bimetallic sites on the surface reduce the energy barrier and facilitate the reaction. Moreover, we demonstrate the reduced thickness of 2D CoFeO improves the OER activity by lowering the bulk resistance and improving the utilization of active sites, which was confirmed by the thickness-activity dependency (6.8 to 35 nm) tests using the ultra-microelectrode platform. Furthermore, the practical values of the as-prepared 2D CoFeO was demonstrated by synthesizing a large-area continuous film and collecting high OER activity and superb durability from macro-electrochemical experiments. Our study provides new solutions for the controlled synthesis of 2D TMOs electrocatalysts and uncovers the electrocatalytic mechanisms with the ultra-microelectrode platform, which provides new insights for exploring the inherent properties and applications of 2D materials in electrocatalysis. (c) 2023, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Two-dimensional transition metal oxides,Chemical vapor deposition,Ultra-microelectrode tests,Oxygen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要