Diallyl trisulfide and its active metabolite allyl methyl sulfone attenuate cisplatin-induced nephrotoxicity by inhibiting the ROS/MAPK/ NF-B pathway

International Immunopharmacology(2024)

引用 0|浏览2
暂无评分
摘要
Cisplatin, a chemotherapy medication employed in the treatment of various solid tumors, is constrained in its clinical application due to nephrotoxicity. Diallyl trisulfide (DATS), a compound derived from garlic that possessed anticancer and antioxidant properties, can be combined with cisplatin without hindering its antitumor effects. The present investigation examined the defensive properties of DATS and its active metabolites against renal dysfunction caused by cisplatin. We created a mouse model to study renal injury caused by cisplatin and assessed kidney histology, immunochemistry, and serum cytokines. DATS treatment effectively reduced the pathological changes caused by cisplatin by decreasing the levels of renal function markers BUN, CRE, cystatin C, NGAL, inflammatory factors TNF-alpha, IL-6, and the protein expression of alpha-SMA, NF-kappa B, KIM-1. A pharmacokinetic evaluation of DATS found that allyl methyl sulfone (AMSO2) was the most abundant and persistent metabolite of DATS in vivo. Then, we examined the impact of AMSO2 on cell viability, apoptosis, ROS generation, and MAPK/ NF-kappa B pathways in HK-2 cells treated with cisplatin. Cotreatment with AMSO2 effectively hindered the HK-2 cells alterations induced by cisplatin. Furthermore, AMSO2 mitigated oxidative stress through the modulation of MAPK and NF-kappa B pathways. Our findings indicated that DATS and its active derivative AMSO2 attenuated cisplatin-induced nephrotoxicity. DATS shows potential as a viable treatment for nephrotoxicity caused by cisplatin.
更多
查看译文
关键词
Allyl methyl sulfone,Cisplatin nephrotoxicity,Diallyl trisulfide,Inflammation,ROS/MAPK/NF-kappa B pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要