Electrostatic-Dominated Conformational Fluctuations and Transition States of Phase Separation in Charge-Balanced Protein Polymer

ACS MACRO LETTERS(2023)

引用 0|浏览0
暂无评分
摘要
Hydration of the protein/polymer is the most important aspect of stability. It is well-known that salts alter the charged polymer's electrostatic forces, ultimately impacting its conformations in solution. The solvent effects lead to certain conformational fluctuations. Previous studies have shown the screening of electrostatic repulsion within the charge-imbalanced protein following charge inversion owing to counterion condensation and phase separation. This article studies conformation stability and phase separation of charge-balanced gelatin (a protein polymer at the isoelectric point) with the addition of different salts. A phenomenon has been reported where the electrostatic effect of salts results in conformational fluctuations in gelatin due to its insufficient hydrations (termed as starvation), which scales with salt concentration. This article also presents different transition states for charge-balanced proteins prior to phase separation. It is concluded that phase separation of a charge-balanced protein passes through a stable state followed by an unstable transition state, where certain unique interactions with salts occur.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要