A novel coupling technique based on thermal desorption gas chromatography with mass spectrometry and ion mobility spectrometry for breath analysis

JOURNAL OF BREATH RESEARCH(2024)

引用 0|浏览0
暂无评分
摘要
Exhaled breath analysis is evolving into an increasingly important non-invasive diagnostic tool. Volatile organic compounds (VOCs) in breath contain information about health status and are promising biomarkers for several diseases, including respiratory infections caused by bacteria. To monitor the composition of VOCs in breath or the emission of VOCs from bacteria, sensitive analytical techniques are required. Next to mass spectrometry, ion mobility spectrometry (IMS) is considered a promising analytical tool for detecting gaseous analytes in the parts per billion by volume to parts per trillion by volume range. This work presents a new, dual coupling of thermal desorption gas chromatography to a quadrupole mass spectrometer (MS) and an IMS by operating a simple splitter. Nearly identical retention times can be reached in the range of up to 30 min with slight deviations of 0.06 min-0.24 min. This enables the identification of unknown compounds in the IMS chromatogram using unambiguous mass spectral identification, as there are still no commercially available databases for IMS. It is also possible to discriminate one of the detectors using the splitter to improve detection limits. Using a test liquid mixture of seven ketones, namely 2-butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, and 2-decanone with a concentration of 0.01 g l-1 reproducibilities ranging from 3.0% to 7.6% for MS and 2.2%-5.3%, for IMS were obtained, respectively. In order to test the system optimized here for the field of breath analysis, characteristic VOCs such as ethanol, isoprene, acetone, 2-propanol, and 1-propanol were successfully identified in exhaled air using the dual detector system due to the match of the corresponding IMS, and MS spectra. The presented results may be considered to be a starting point for the greater use of IMS in combination with MS within the medical field.
更多
查看译文
关键词
TD-GC-MS-IMS,ion mobility spectrometry,volatile organic compounds,biomarker,breath analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要