Functional coupling between Piezo1 and TRPM4 influences the electrical activity of HL-1 atrial myocytes

The Journal of physiology(2023)

引用 0|浏览8
暂无评分
摘要
The transient receptor potential melastatin 4 (TRPM4) channel contributes extensively to cardiac electrical activity, especially cardiomyocyte action potential formation. Mechanical stretch can induce changes in heart rate and rhythm, and the mechanosensitive channel Piezo1 is expressed in many cell types within the myocardium. Our previous study showed that TRPM4 and Piezo1 are closely co-localized in the t-tubules of ventricular cardiomyocytes and contribute to the Ca2+-dependent signalling cascade that underlies hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. In the present study, we employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate whether Piezo1-TRPM4 coupling can affect action potential properties. We used the small molecule Piezo1 agonist, Yoda1, as a surrogate for mechanical stretch to activate Piezo1 and detected the action potential changes in HL-1 cells using FluoVolt, a fluorescent voltage sensitive dye. Our results demonstrate that Yoda1-induced activation of Piezo1 changes the action potential frequency in HL-1 cells. This change in action potential frequency is reduced by Piezo1 knockdown using small intefering RNA. Importantly knockdown or pharmacological inhibition of TRPM4 significantly affected the degree to which Yoda1-evoked Piezo1 activation influenced action potential frequency. Thus, the present study provides in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+-activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction.imageKey pointsThe transient receptor potential melastatin 4 (TRPM4) and Piezo1 channels have been confirmed to contribute to the Ca2+-dependent signalling cascade that underlies cardiac hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ.We employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate the effect of Piezo1-TRPM4 coupling on cardiac electrical properties.The results show that both pharmacological and genetic inhibition of TRPM4 significantly affected the degree to which Piezo1 activation influenced action potential frequency in HL-1 cells.Our findings provide in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line.The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+-activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction in various (patho)physiological processes. Abstract figure legend Piezo1-TRPM4 interaction influences the action potential frequency of HL-1 atrial myocytes. Top: Yoda1-evoked Piezo1 activation stimulates TRPM4 via the increase of intracellular Ca2+. This activation of TRPM4 depolarizes plasma membrane through Na+ entry and induces further Ca2+ influx through other Ca2+ transporters and/or channels. In HL-1 cells, this results in an increase of action potential frequency. Bottom: inhibition of TRPM4 in HL-1 cells affects the degree to which Piezo1 activation changes action potential frequency. This finding provides in vitro evidence of a probably universal model in mechanosensory pathways: a Ca2+-activated ion channel acts as a downstream effector or amplifier of a primary Ca2+-permeable mechanosensor. Created with .image
更多
查看译文
关键词
action potential,cardiomyocyte,flufenamic acid,mechanosensitive,Yoda1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要