Additive fabrication of SiO2-based micro-optics with lag-free depth and reduced roughness

OPTICS EXPRESS(2023)

引用 0|浏览1
暂无评分
摘要
Ultra-thin optical components with high design flexibility are required for various applications in today's optical and imaging systems, and this is why the use of diffractive optical elements (DOEs) is rapidly increasing. They can be used for multiple optical systems because of their compact size, increased design flexibility, and ease of mass production. Unfortunately, most existing DOEs are fabricated using conventional etching-based methods, resulting in high surface roughness and aspect ratio-dependent etching rate. Furthermore, when small feature size and large feature size patterns co-exist in the same DOE design, the etching depth differs significantly in the same design, called reactive-ion etching (RIE) lag. All these artifacts lead to a reduction in the diffraction efficiency of DOEs. To overcome the drawbacks of etching-based fabrication methods, we propose an alternative method for fabricating DOEs without RIE lag and with improved surface smoothness. The method consists of additively growing multilevel microstructures of SiO2 material deposited by the plasma-enhanced chemical vapor deposition (PECVD) method onto the substrate followed by liftoff. We demonstrate the effectiveness of the fabrication methods with representative DOEs for imaging and laser beam shaping applications. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要