LncRNA MALAT1 and Ischemic Stroke: Pathogenesis and Opportunities

Molecular Neurobiology(2023)

Cited 0|Views5
No score
Abstract
Ischemic stroke (IS) stands as a prominent cause of mortality and long-term disability around the world. It arises primarily from a disruption in cerebral blood flow, inflicting severe neural injuries. Hence, there is a pressing need to comprehensively understand the intricate mechanisms underlying IS and identify novel therapeutic targets. Recently, long noncoding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules with the potential to attenuate pathogenic mechanisms following IS. Among these lncRNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has been extensively studied due to its involvement in the pathophysiological processes of IS. In this review, we provide an in-depth analysis of the essential role of MALAT1 in the development and progression of both pathogenic and protective mechanisms following IS. These mechanisms include oxidative stress, neuroinflammation, cell death signaling, blood brain barrier dysfunction, and angiogenesis. Furthermore, we summarize the impact of MALAT1 on the susceptibility and severity of IS. This review highlights the potential risks associated with the therapeutic use of MALAT1 for IS, which are attributable to the stimulatory action of MALAT1 on ischemia/reperfusion injury. Ultimately, this review sheds light on the potential molecular mechanisms and associated signaling pathways underlying MALAT1 expression post-IS, with the aim of uncovering potential therapeutic targets.
More
Translated text
Key words
Ischemic Stroke,Long Noncoding RNA,MALAT1,Oxidative Stress,Neuroinflammation,Cell Death,Blood Brain Barrier,Angiogenesis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined