Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates

ACTA BIOMATERIALIA(2024)

引用 0|浏览7
暂无评分
摘要
There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophiltargeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1-2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia.
更多
查看译文
关键词
Nanoparticle,Bacteremia,Neutrophil,MRSA,Ly6G,Inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要