The geometry of flow: Advancing predictions of river geometry with multi-model machine learning

Shuyu Y Chang, Zahra Ghahremani, Laura Manuel, Mohammad Erfani,Chaopeng Shen,Sagy Cohen, Kimberly Van Meter, Jennifer L Pierce, Ehab A Meselhe, Erfan Goharian

CoRR(2023)

引用 0|浏览0
暂无评分
摘要
Hydraulic geometry parameters describing river hydrogeomorphic is important for flood forecasting. Although well-established, power-law hydraulic geometry curves have been widely used to understand riverine systems and mapping flooding inundation worldwide for the past 70 years, we have become increasingly aware of the limitations of these approaches. In the present study, we have moved beyond these traditional power-law relationships for river geometry, testing the ability of machine-learning models to provide improved predictions of river width and depth. For this work, we have used an unprecedentedly large river measurement dataset (HYDRoSWOT) as well as a suite of watershed predictor data to develop novel data-driven approaches to better estimate river geometries over the contiguous United States (CONUS). Our Random Forest, XGBoost, and neural network models out-performed the traditional, regionalized power law-based hydraulic geometry equations for both width and depth, providing R-squared values of as high as 0.75 for width and as high as 0.67 for depth, compared with R-squared values of 0.57 for width and 0.18 for depth from the regional hydraulic geometry equations. Our results also show diverse performance outcomes across stream orders and geographical regions for the different machine-learning models, demonstrating the value of using multi-model approaches to maximize the predictability of river geometry. The developed models have been used to create the newly publicly available STREAM-geo dataset, which provides river width, depth, width/depth ratio, and river and stream surface area (%RSSA) for nearly 2.7 million NHDPlus stream reaches across the rivers and streams across the contiguous US.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要