Anomaly detection with flow-based fast calorimeter simulators

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
Recently, several normalizing flow-based deep generative models have been proposed to accelerate the simulation of calorimeter showers. Using CaloFlow as an example, we show that these models can simultaneously perform unsupervised anomaly detection with no additional training cost. As a demonstration, we consider electromagnetic showers initiated by one (background) or multiple (signal) photons. The CaloFlow model is designed to generate single photon showers, but it also provides access to the shower likelihood. We use this likelihood as an anomaly score and study the showers tagged as being unlikely. As expected, the tagger struggles when the signal photons are nearly collinear, but is otherwise effective. This approach is complementary to a supervised classifier trained on only specific signal models using the same low-level calorimeter inputs. While the supervised classifier is also highly effective at unseen signal models, the unsupervised method is more sensitive in certain regions and thus we expect that the ultimate performance will require a combination of approaches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要