Stirred-electrodeposition construction of porous Fe-doped NiSe nanoclusters as a bifunctional catalyst for water splitting

Dingdiao Mo,Jiaxing Zhang, Guoxiang Chen, Zihao Huang, Xiangao Liu,Weitong Cai,Jie Cui,Wei Su

Journal of Alloys and Compounds(2024)

引用 0|浏览0
暂无评分
摘要
The electrodeposition method is commonly used for fabricating water splitting catalysts. Traditional methods assume a static precursor solution, ignoring the effects of solution dynamics. We theorized that stirring the solution during electrodeposition could improve mass transfer and current distribution, thereby enhancing electrochemical kinetics and nucleation. Consequently, we developed a novel electrodeposition technique to synthesize Fe-doped NiSe, an effective catalyst for alkaline water hydrolysis, demonstrating exceptional performance and stability. This catalyst notably decreases the overpotentials for OER and HER to 185/266 mV and 101/271 mV at 10 and 300 mA cm−2, respectively. At the same time, the overall water splitting system comprising this catalyst requires only a low potential of 1.48 V to stably catalyze water splitting for over 60 hours. Electrochemical tests indicate that stirred deposition endows the catalyst with a larger electrochemically active area. In-situ Raman spectroscopy reveals NiOOH as an active phase, and Fe doping facilitates NiOOH formation at lower overpotentials, enhancing OER performance. First-principles calculations suggest that Fe doping optimizes the rate-determining step, lowers the activation energy for the OER process, and boosts conductivity. This study presents a method to improve OER efficiency in Ni-based catalysts, offering insights into mechanism control.
更多
查看译文
关键词
Ni0.5Fe0.5Se-s/NF,Overall alkaline water splitting,Density functional theory (DFT),Hydrogen evolution reaction,Oxygen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要