Vision for the 12 LABOURS Digital Twin Platform.

Thiranja P Babarenda Gamage,Ayah Elsayed, Chinchien Lin,Alan Wu, Yuan Feng, Jianwei Yu, Linkun Gao, Savindi Wijenayaka,Martyn P Nash,Anthony J Doyle,David P Nickerson

2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)(2023)

引用 0|浏览3
暂无评分
摘要
Clinical translation of personalised computational physiology workflows and digital twins can revolutionise healthcare by providing a better understanding of an individual's physiological processes and any changes that could lead to serious health consequences. However, the lack of common infrastructure for developing these workflows and digital twins has hampered the realisation of this vision. The Auckland Bioengineering Institute's 12 LABOURS project aims to address these challenges by developing a Digital Twin Platform to enable researchers to develop and personalise computational physiology models to an individual's health data in clinical workflows. This will allow clinical trials to be more efficiently conducted to demonstrate the efficacy of these personalised clinical workflows. We present a demonstration of the platform's capabilities using publicly available data and an existing automated computational physiology workflow developed to assist clinicians with diagnosing and treating breast cancer. We also demonstrate how the platform facilitates the discovery and exploration of data and the presentation of workflow results as part of clinical reports through a web portal. Future developments will involve integrating the platform with health systems and remote-monitoring devices such as wearables and implantables to support home-based healthcare. Integrating outputs from multiple workflows that are applied to the same individual's health data will also enable the generation of their personalised digital twin.Clinical Relevance- The proposed 12 LABOURS Digital Twin Platform will enable researchers to 1) more efficiently conduct clinical trials to assess the efficacy of their computational physiology workflows and support the clinical translation of their research; 2) reuse primary and derived data from these workflows to generate novel workflows; and 3) generate personalised digital twins by integrating the outputs of different computational physiology workflows.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要