A Virtual Reality (VR) based Comprehensive Freezing of Gait (FOG) Neuro-electrophysiologic Evaluation System for People with Parkinson's Disease (PD).

Haifeng Zhao, Ziyi Feng, Shenglin Hao,Huiling Tan,Shikun Zhan,Wei Liu,Yong Lu,Chunyan Cao

2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)(2023)

引用 0|浏览3
暂无评分
摘要
Although Freezing of gait (FOG) is one of the most frustrating phenomena for people with Parkinson's Disease (PD), especially in their advanced stage, it is one of the least explained syndromes. The current studies only showed beta oscillations existed in frontal cortex-basal ganglia networks. Further studies need to be carried out. However, simultaneously recording neuro-electrophysiologic signals during walking is always a challenge, especially for Electroencephalogram (EEG) and Local Field Potential (LFP). This paper demonstrated a Virtual Reality (VR) based system which can trigger FOG and record biological signals at the same time. Moreover, the utilisation of VR will significantly decrease space requirements. It will provide a safer and more convenient evaluation environment for future participants. One participant with PD helped to validate the feasibility of the system. The result showed that both EEG and LFP could be recorded at the same time with trigger markers. This system design can be used to trigger freezing episodes in the controlled environment, differentiate subtypes of gait difficulties, and identify neural signatures associated with freezing episodes.Clinical relevance - This paper proposed a VR-based comprehensive FOG neuro-electrophysiologic evaluation system for people with PD. It had the advantages of minimum space requirement and wireless LFP data collection without externalised leads. This paper was to indicate a larger study which would formally recruit larger populations with PD and FOG. Future studies would explore FOG-related brain network coherence.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要