Exaggerated High-Beta Oscillations are Associated with Cortical Thinning at the Motor Cortex in Parkinson's Disease.

2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)(2023)

引用 0|浏览4
暂无评分
摘要
Elevated β oscillations (13-35 Hz) are characteristic pathophysiology in Parkinson's Disease (PD). Cortical thinning has also been reported in the disease, however the relationship between these biomarkers of PD has not been established. By comparing electrophysiological measurements with cortical thickness, this study aims to reveal the pathoetiology of disease and symptoms in PD. Preoperative magnetic resonance imaging (MRI) and intraoperative local field potentials (LFPs) were collected from 34 subjects diagnosed with PD. Cortical surfaces were reconstructed from the images, and cortical thickness was extracted from the subregions where the recording electrode was placed in M1. LFPs were preprocessed and cleaned using a semiautomatic artifact detection algorithm, then power spectral densities (PSD) were computed and periodic and aperiodic frequency components were calculated. Nonparametric Spearman rank correlations assessed the relationship between electrophysiological components (i.e. center frequency (CF), power, bandwidth, 1/f exponent, knee), with cortical thickness. According to the CF of each subject's PSD, the cohort was split into two sub-groups: low-β peak (13-20 Hz) and high-β peak (20-35 Hz) groups. There was a significant negative correlation between power and cortical thickness only in the high-β subgroup (r=-0.48, p(corrected)=0.049). This relationship remained significant when correcting for age (r=-0.52,p=0.015), indicating that the effect of age on cortical thinning was not the determining factor. We did not find significant differences between UPDRS-III motor symptom scores for the low-and high-β subgroups. Of note is the dominance of high-β oscillatory power and its relationship with cortical thickness. As suggested by the literature, increased high-β activity during movement may be exaggerated in PD. These findings suggest that the characteristic cortical thinning in PD causes variation in electrical activity, leading to elevated high-β activity.Clinical relevance- This multimodal study provides additional insights on the pathophysiology and its relevance with morphology of Parkinson's Disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要