Brain microstate spatio-temporal dynamics as a candidate endotype of consciousness

NEUROIMAGE-CLINICAL(2024)

引用 0|浏览2
暂无评分
摘要
Consciousness can be defined as a phenomenological experience continuously evolving. Current research showed how conscious mental activity can be subdivided into a series of atomic brain states converging to a discrete spatiotemporal pattern of global neuronal firing. Using the high temporal resolution of EEG recordings in patients with a severe Acquired Brain Injury (sABI) admitted to an Intensive Rehabilitation Unit (IRU), we detected a novel endotype of consciousness from the spatiotemporal brain dynamics identified via microstate analysis. Also, we investigated whether microstate features were associated with common neurophysiological alterations. Finally, the prognostic information comprised in such descriptors was analysed in a sub-cohort of patients with prolonged Disorder of Consciousness (pDoC). Occurrence of frontally-oriented microstates (C microstate), likelihood of maintaining such brain state or transitioning to the C topography and complexity were found to be indicators of consciousness presence and levels. Features of left-right asymmetric microstates and transitions toward them were found to be negatively correlated with antero-posterior brain reorganization and EEG symmetry. Substantial differences in microstates' sequence complexity and presence of C topography were found between groups of patients with alpha dominant background, cortical reactivity and antero-posterior gradient. Also, transitioning from left-right to antero-posterior microstates was found to be an independent predictor of consciousness recovery, stronger than consciousness levels at IRU's admission. In conclusions, global brain dynamics measured with scale-free estimators can be considered an indicator of consciousness presence and a candidate marker of short-term recovery in patients with a pDoC.
更多
查看译文
关键词
Brain Spatio-Temporal Dynamics,EEG microstates,Prolonged Disorder of Consciousness,Severe Acquired Brain Injuries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要