Graphene oxide enabled efficient multi-enzyme immobilization for thermodynamic-driven biomanufacturing of fructose

Kongliang Xu, Xiaoqing Chen, Qingtao Chen, Hongpeng Pan,Yuguo Zheng,Renchao Zheng

PROCESS BIOCHEMISTRY(2024)

引用 0|浏览5
暂无评分
摘要
Thermodynamic-driven biomanufacturing of fructose catalyzed by phosphorylation and dephosphorylation cascade reactions is considered as the future of industrial fructose production due to its high theoretical yield of 100 %. Co-immobilizing all four cascade enzymes involved on solid materials is crucial for its successful industrial application, as it significantly reduces costs through enzyme reusage. Graphene oxide served as a multienzyme carrier in the thermodynamic-driven biosystem of fructose and displayed high loading capacities for the four cascade enzymes. The resulting co-immobilized biosystem based on graphene oxide exhibited superior biocatalytic performance than the other support materials. Additionally, it yielded 54.7 % fructose from maltodextrin. Utilizing two additional enzymes to improve the substrate utilization, an 85.2 % fructose yield was achieved, surpassing the current industrial-scale fructose production process employing monosaccharide isomerization. This study sheds light on the potential industrial applications of thermodynamic-driven biomanufacturing systems for fructose production.
更多
查看译文
关键词
Fructose,Graphene oxide,Multi -enzyme immobilization,Thermodynamic -driven biomanufacturing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要