Designing, prototyping, and testing an integrated e-axle for third-generation electric vehicles

Michele De Gennaro, James H. Page,Tobias Wellerdieck, Antonio Lionetto, Sven Herber, Moritz Abbenhaus,Paolo Pescetto,Gianmario Pellegrino, Alfredo Primon, Patricio A. Torres,Andres Sierra-Gonzalez,Fernando Alvarez-Gonzalez,Michael Samsu Koroma,Daniele Costa

Transportation Research Procedia(2023)

Cited 0|Views2
No score
Abstract
This paper presents the results of the H2020 project FITGEN, aiming at designing, prototyping, and delivering a functionally integrated e-axle ready for its implementation in third-generation electric vehicles. The manuscript concisely glances through the design results of all its main components, presenting the prototype delivered in April 2021. Preliminary performance results show that the e-motor is capable of 23,000 rpm, 130 kW continuous, 220 kW peak power and 210 Nm peak torque. The e-motor delivers up to 5.2 kW/kg, while the inverter delivers up to 35 kW/l. Its high-speed design allows for achieving these targets with 1.35 kg of rare-earth magnets, reducing by one-third the content of rare-earths against the best-in-class market available e-motor technology in 2022. The final FITGEN performance results and demonstration are expected to be delivered in the second semester of 2022.
More
Translated text
Key words
e-motor,inverter,e-axle,third-generation electric vehicles,FITGEN
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined