Chainable Functional Commitments for Unbounded-Depth Circuits

THEORY OF CRYPTOGRAPHY, TCC 2023, PT III(2023)

引用 0|浏览4
暂无评分
摘要
A functional commitment (FC) scheme allows one to commit to a vector x and later produce a short opening proof of (f, f(x)) for any admissible function f. Since their inception, FC schemes supporting ever more expressive classes of functions have been proposed. In this work, we introduce a novel primitive that we call chainable functional commitment (CFC), which extends the functionality of FCs by allowing one to 1) open to functions of multiple inputs f( x(1),..., x(m)) that are committed independently, 2) while preserving the output also in committed form. We show that CFCs for quadratic polynomial maps generically imply FCs for circuits. Then, we efficiently realize CFCs for quadratic polynomials over pairing groups and lattices, resulting in the first FC schemes for circuits of unbounded depth based on either pairingbased or lattice-based falsifiable assumptions. Our FCs require fixing a-priori only the maximal width of the circuit to be evaluated, and have opening proof size depending only on the circuit depth. Additionally, our FCs feature other nice properties such as being additively homomorphic and supporting sublinear-time verification after offline preprocessing. Using a recent transformation that constructs homomorphic signatures (HS) from FCs, we obtain the first pairing- and lattice-based realisations of HS for bounded-width, but unbounded-depth, circuits. Prior to this work, the only HS for general circuits is lattice-based and requires bounding the circuit depth at setup time.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要