High growth rate magnetron sputter epitaxy of GaN using a solid Ga target

VACUUM(2024)

引用 0|浏览9
暂无评分
摘要
Magnetron sputter epitaxy (MSE) is a promising processing route for group-III nitride semiconductors, with the potential to enable high-quality and low cost GaN growth for widespread use. However, fundamental techno-logical hurdles must be overcome to enable the adoption of MSE in industrial production. Here, we present a new UHV-compatible magnetron design with high-performance cooling, enabling high GaN growth rates at high growth temperatures using a solid Ga target. The magnetron is tested with a wide range of process parameters and a stable process is feasible while maintaining the solid state of the Ga target. High GaN growth rates of up to 5 mu m/h are achieved at room temperature and a growth rate of 4 mu m/h at high temperature, which is one order of magnitude higher compared to MSE with a liquid target. We grow GaN on c-plane sapphire substrates and show the impact of partial pressure ratio and target-to-substrate distance (TSD) on growth rate, film morphology and crystal quality of GaN films with scanning electron microscopy and X-ray diffraction. While the growth rate and film morphology are strongly impacted by the process parameter variation, the crystal quality is further impacted by the overall film thickness. For a 2 mu m thick GaN film a full width at half maximum of X-ray rocking curve (omega-FWHM) of GaN 10 1 1 reflection of 0.32 degrees is achieved. We demonstrate a process window for growth of dense and smooth GaN films with high crystal quality using low N2 flow rates and high TSD. By introducing a 20 nm AlN nucleation layer prior to the growth of 390 nm GaN, the omega-FWHM of GaN 0002 reflection of 0.19 degrees is achieved. The epitaxially grown crystalline structure is precisely examined by transmission electron microscopy.
更多
查看译文
关键词
GaN,Solid Ga,Magnetron sputter epitaxy,Growth rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要