Distributed multi-objective optimization for SNP-SNP interaction detection

Fangting Li,Yuhai Zhao, Tongze Xu, Yuhan Zhang

METHODS(2024)

引用 0|浏览3
暂无评分
摘要
The detection of complex interactions between single nucleotide polymorphisms (SNPs) plays a vital role in genome-wide association analysis (GWAS). The multi-objective evolutionary algorithm is a promising technique for SNP-SNP interaction detection. However, as the scale of SNP data further increases, the exponentially growing search space gradually becomes the dominant factor, causing evolutionary algorithm (EA)-based approaches to fall into local optima. In addition, multi-objective genetic operations consume significant amounts of time and computational resources. To this end, this study proposes a distributed multi-objective evolutionary framework (DM-EF) to identify SNP-SNP interactions on large-scale datasets. DM-EF first partitions the entire search space into several subspaces based on a space-partitioning strategy, which is nondestructive because it guarantees that each feasible solution is assigned to a specific subspace. Thereafter, each subspace is optimized using a multi-objective EA optimizer, and all subspaces are optimized in parallel. A decomposition-based multi-objective firework optimizer (DCFWA) with several problem-guided operators was designed. Finally, the final output is selected from the Pareto-optimal solutions in the historical search of each subspace. DM-EF avoids the preference for a single objective function, handles the heavy computational burden, and enhances the diversity of the population to avoid local optima. Notably, DM-EF is load-balanced and scalable because it can flexibly partition the space according to the number of available computational nodes and problem size. Experiments on both artificial and real-world datasets demonstrate that the proposed method significantly improves the search speed and accuracy.
更多
查看译文
关键词
Distributed computing,SNP-SNP interactions,Multi-objective evolutionary algorithm,Space-partitioning strategy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要