Tumor microenvironment responsive nano-platform for overcoming sorafenib resistance of hepatocellular carcinoma

MATERIALS TODAY BIO(2024)

引用 0|浏览2
暂无评分
摘要
Hepatocellular carcinoma (HCC) is a malignant tumor, which seriously jeopardizes human health. The 5-year relative survival rate of HCC is only about 18%. Sorafenib, a small molecule multi-targeted tyrosine kinase inhibitor (MTKI), has been classified as the first-line treatment scheme for HCC and has significantly extended the median survival time for patients with advanced HCC. Nevertheless, the emergence of sorafenib resistance has substantially hampered its further clinical application. Herein, the nano-platform based on phototherapy and small molecular targeted therapy (SMTT) was devised to overcome the sorafenib resistance and reduce the adverse effects. Hollow mesoporous manganese dioxide (H-MnO2) was prepared by hard template method, and the prepared H-MnO2 was used to load sorafenib and Chlorin e6 (Ce6). Subsequently, the nanoparticle (NPs) were modified with dopamine to optimize biocompatibility. The final prepared NPs (MCS NPs) exhibit regular spherical shape with a hydrated particle size of approximately 97.02 nm. MCS NPs can not only possess tumor microenvironment (TME) stimuli-responsive drug release performance but also can enhance the efficacy of photodynamic therapy and reverse sorafenib resistance by alleviating tumor hypoxia. Under the action of phototherapy (Ce6) combined with molecular targeted therapy (sorafenib), MCS NPs manifest a satisfactory antitumor effect for sorafenib-sensitive or sorafenib-resistant HCC cells, and retain the antiangiogenic properties of sorafenib. In the nude mouse subcutaneous tumor model constructed with sorafenib-resistant cells, MCS NPs demonstrated superior tumor imaging ability and excellent biocompatibility. The tumor inhibition rate of the MCS NPs group without laser irradiation was 53.4 %, while the MCS NPs group with laser irradiation was as high as 100 %. The novel smart TME-responsive nano-platform shows great potential for overcoming sorafenib resistance and realizes multimodality imaging and therapy of HCC.
更多
查看译文
关键词
Tumor microenvironment response,Sorafenib resistance,Phototherapy,Multimodality imaging,Hollow MnO 2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要