The effect of {O,N}=XM

Journal of Molecular Graphics & Modelling(2024)

引用 0|浏览0
暂无评分
摘要
The local chemical reactivity of FOX-7 (1,1-diamino-2,2-nitroethylene, also known as DADNE from DiAminoDiNitroEthylene) was elucidated through a quantitative study of the electrostatic potential on the molecular surface, topological analysis based on Bader's theory, and the EDA-NOCV method. Unlike (O2N)2CC(NH2)H2N⋯Cp2MCH3+ complexes, which exhibit both σ-donor and π-acceptor features, the situation is different concerning the (H2N)2CC(NO2)(O)NO⋯Cp2MCH3+ complexes, where both charge transfers correspond to the σ-donation. The two charge transfers reinforce each other, resulting in increased stability for (H2N)2CC(NO2)(O)NO⋯Cp2MCH3+. This seems to strengthen the (H2N)2CC(NO2)(O)NO⋯M={Ti,Zr,Hf} bond, which may explain the high stability of (H2N)2CC(NO2)(O)NO⋯Cp2MCH3+ compared to (O2N)2CC(NH2)-H2N⋯Cp2MCH3+. Results from topological analysis revealed that the decreased sensitivity to decomposition of CNO2 bonds depends on the chemical nature of the interacting metal, and the best achievements are obtained for the Hf-based complex. Our results demonstrate that the interaction of M={Ti,Zr,Hf} with CNO2 is more favourable than that with CNH2, this specific action on the trigger bond may support the use of Metallocene Methyl Cations (MMC) as possible neutralisers.
更多
查看译文
关键词
<mmlmath xmlnsmml=http//wwww3org/1998/math/mathml,eda-nocv
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要