Tetrahedral amorphous carbon coating for knee joint application and its tribological performance

Vadym Voropai, M. Nieher, Alexander Kratsch, Werner Kirchner, B. Giggel,Christoph H. Lohmann,Jessica Bertrand,Steffen Weißmantel, J. Döring

Orthopaedic Proceedings(2023)

引用 0|浏览10
暂无评分
摘要
Total knee arthroplasty is one of the most common surgeries. About 92% of all implanted knee endorposthesis in 2020 were manufactured from uncoated CoCrMo articulating on ultra-high-molecular-weight polyethylene. All articluations generate wear particles and subsequent emission of metal ions due to the mechanical loading. These wear particles cause diverse negative reactions in the surrounding tissues and can lead to implant loosening. Coating technologies might offer the possibility to reduce this wear. Therefore, we investigated the applicability of tetrahedral amorphous carbon (ta-C) coating on CoCrMo alloy. Polished specimens made of CoCrMo wrought alloy according to ISO 5832-12 were coated with ta-C coatings with different layer structure using pulsed laser deposition (PLD). This process allows the deposition of ta-C coatings with low internal stress using an additional relaxation laser. Surface quality and mechanical properties of the coating were characterised using optical surface measurements (NanoFocus μsurf expert, NanoFocus AG) and a nanoindentation tester NHT 3 (Anton Paar GmbH). Scratch tests were performed on Micro Scratch Tester MST 3 (Anton Paar TriTec SA) to define the coating adhesion. Pin-on-plate tribological tests, with a polyethylene ball sliding on the ta-C-coated plate under a defined load according to ISO 14243-1 were performed using a linear tribometer (Anton Paar GmbH) to evaluate the tribological and wear properties. The ta-C coatings showed a mean roughness Ra of 5-20 nm and a hardness up to 60 GPa (n=3). The adhesion of the ta-C coatings (n=3) was comparable to the commercial coatings like TiN and TiNbN. The pin-on-plate tests showed an improvement of tribological properties in comparison with the polished uncoated CoCrMo specimens (n=3). The ta-C coatings applied by DLP technology show increased hardness compared to the base material and sufficient adhesion. Further research will be needed to investigate the optimal coating strategy for implant coating.
更多
查看译文
关键词
tribological performance,knee
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要