A Game-Theoretic Approach for Electric Vehicle Aggregators Participating in Phase Balancing Considering Network Topology

Jing Huang,Xiuli Wang, Yifei Wang,Chengcheng Shao, Guo Chen,Peng Wang

IEEE TRANSACTIONS ON SMART GRID(2024)

引用 0|浏览2
暂无评分
摘要
With the increasing popularity of electric vehicles (EVs), uncontrolled charging of single-phase plug-in EVs will result in severe three-phase unbalance problem in distribution networks. To solve the problem, a phase balancing (PB) scheme performed by EV aggregators (EVAs) based on the linear multiphase power flow model is proposed in this paper. In the scheme, the PB compensations are provided to encourage EVAs to help the distribution system operator reduce the phase unbalance of the entire grid. Considering all EVAs are selfish and rational, the PB scheme is formulated as a game problem, in which each EVA competes with other EVAs to determine its charging strategy to minimize the charging cost minus the PB compensation. The consideration of coupling voltage constraints leads this game model to a challenging generalized Nash equilibrium problem (GNEP). By employing the theory of variational inequality, the properties of solutions for the GNEP are investigated. Furthermore, a two-level distributed algorithm is designed to find the unique variational solution, a fair and stable solution. Finally, comprehensive case studies are conducted on the IEEE-13 and IEEE-123 test systems to corroborate that the proposed PB game model can effectively mitigate voltage unbalance and cut EV users' costs.
更多
查看译文
关键词
Phase balancing,electric vehicle aggregators,network topology,generalized Nash equilibrium problem,variational inequality,two-level distributed algorithm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要