Tetrahalidocuprate(II) complexes with substituted pyridinium ions: effects of halide substitution

Lixin Li, A. L. Shapiro,Firas F. Awwadi, Christopher P. Landee,Mark M. Turnbull,Jan L. Wikaira

Journal of Coordination Chemistry(2023)

引用 0|浏览2
暂无评分
摘要
The Cu(II) complexes (H-5-FAP)2CuBr4 (1) and (H-2,3-dimpy)2CuCl4 (2) have been prepared and characterized structurally and magnetically (H-5-FAP = 2-amino-5-fluoropyridinium; H-2,3-dimpy = 2,3-dimethylpyridinium). They crystallize in the space groups P-1 and Pbcn, respectively, in comparison to their halido counterparts (H-5-FAP)2CuCl4 (1a) and (H-2,3-dimpy)2CuBr4 (2a) which crystallize in the space groups P21/c and P21/n. The differences in crystal packing, resulting in part from the difference in distortion of the CuX42− ions, create different magnetic lattices. Data for 1 were fit to the strong-rail ladder model resulting in a Curie constant of 0.400(8) emu-K/mol-Oe, J/kB-rail = −5.77(1) K and J/kB-rung = 3.17(3) K. Data for 2 were fit to the Curie-Weiss law resulting in a Curie constant of 0.398(1) emu-K/mol-Oe and θ = −0.11(4) K, indicating a virtual lack of magnetic exchange interactions. The structures and magnetic properties are compared to literature compounds and general trends noted. The differences in the chloride/bromide ions in the structure lead to significant differences in the packing in the cases of both 1 and 2, which result in differences in the antiferromagnetic exchange in both complexes and, in the case of 2, versus 2a, an elimination of the antiferromagnetic properties.
更多
查看译文
关键词
pyridinium ions,complexes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要