IntelliBeeHive: An Automated Honey Bee, Pollen, and Varroa Destructor Monitoring System

Christian I. Narcia-Macias, Joana Guardado, Enrique Andrio Enríquez,Joanne Rampersad-Ammons, Enrique Andrio Enríquez,Dongchul Kim

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
Utilizing computer vision and the latest technological advancements, in this study, we developed a honey bee monitoring system that aims to enhance our understanding of Colony Collapse Disorder, honey bee behavior, population decline, and overall hive health. The system is positioned at the hive entrance providing real-time data, enabling beekeepers to closely monitor the hive's activity and health through an account-based website. Using machine learning, our monitoring system can accurately track honey bees, monitor pollen-gathering activity, and detect Varroa mites, all without causing any disruption to the honey bees. Moreover, we have ensured that the development of this monitoring system utilizes cost-effective technology, making it accessible to apiaries of various scales, including hobbyists, commercial beekeeping businesses, and researchers. The inference models used to detect honey bees, pollen, and mites are based on the YOLOv7-tiny architecture trained with our own data. The F1-score for honey bee model recognition is 0.95 and the precision and recall value is 0.981. For our pollen and mite object detection model F1-score is 0.95 and the precision and recall value is 0.821 for pollen and 0.996 for "mite". The overall performance of our IntelliBeeHive system demonstrates its effectiveness in monitoring the honey bee's activity, achieving an accuracy of 96.28 % in tracking and our pollen model achieved a F1-score of 0.831.
更多
查看译文
关键词
automated honey intellibeehive,pollen,monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要