Chrome Extension
WeChat Mini Program
Use on ChatGLM

Transmission of magnetic island modes across interplanetary shocks: comparison of theory and observations

Journal of physics(2023)

Cited 0|Views2
No score
Abstract
Abstract Interplanetary shock waves are observed frequently in turbulent solar wind. They naturally enhance the temperature/entropy of the plasma through which they propagate. Moreover, many studies have shown that they also act as an amplifier of the fluctuations incident on the shock front. Solar wind turbulent fluctuations can be well described as the superposition of quasi-2D and slab components, the former being energetically dominant. In this paper, we address the interaction of fast forward shocks observed by the Wind spacecraft at 1 AU and quasi-2D turbulent fluctuations in the framework of the Zank et al. (2021) transmission model and we compare model predictions with observations. Our statistical study includes 378 shocks with varying upstream conditions and Mach numbers. We estimate the average ratio of the downstream observed and theoretically predicted power spectra within the inertial range of turbulence. We find that the distributions of this ratio for the whole set and for the subset of shocks that met the assumptions of the model, are remarkably close. We argue that a large statistical spread of the distributions of this ratio is governed by the inherent variation of the upstream conditions. Our findings suggest that the model predicts the downstream fluctuations with a good accuracy and that it may be adopted for a wider class of shocks than it was originally meant for.
More
Translated text
Key words
magnetic island modes,interplanetary shocks
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined