谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Non-invasive detection of bladder cancer via microfluidic immunoassay of the protein biomarker NMP22

Analytical Methods(2023)

引用 0|浏览11
暂无评分
摘要
Bladder cancer (BC) is a malignant tumor that occurs in the bladder mucosa and has a high morbidity and mortality rate. Early diagnosis means that cystoscopy-aided imaging is invasive and pricey. Microfluidic immunoassay enables noninvasive detection of early BC. However, its clinical applications are limited due to the poor internal design and hydrophobic surface of polydimethylsiloxane (PDMS) chip. This study aims to design a PDMS chip with right-moon capture arrays and prepare a hydrophilic surface by APTES with different concentrations (PDMS-three-step: O2 plasma-5-98% APTES), which facilitates early detection of BC with enhanced sensitivity. Simulations showed that the right-moon arrays in the capture chamber reduced the flow velocity and shear stress of the target molecule NMP22, improving the capture performance of the chip. PDMS-three-step surface was measured by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), contact angle, and antibody immobilization. The results displayed that the contact angle of PDMS-three-step remained in the range of 40° to 50° even after 30 days of exposure to air, leading to a more stable hydrophilic surface. The effectiveness of the PDMS chip was assessed via the quantitative immunoassay of the protein marker NMP22 and its sensitivity analysis to urine. After the assessment, the LOD of NMP22 was 2.57 ng mL-1, and the sensitivity was 86.67%, which proved that the PDMS chip was effective. Thus, this study provided a novel design and modification method of the microfluidic chip for the early detection of BC.
更多
查看译文
关键词
protein biomarker nmp22,microfluidic immunoassay,bladder,non-invasive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要