Discrete Fourier Transforms

Applied and numerical harmonic analysis(2023)

引用 0|浏览2
暂无评分
摘要
This chapter deals with the discrete Fourier transform (DFT). In Sect. 3.1, we show that numerical realizations of Fourier methods, such as the computation of Fourier coefficients, Fourier transforms, or trigonometric interpolation, lead to the DFT. We also present barycentric formulas for interpolating trigonometric polynomials. In Sect. 3.2, we study the basic properties of the Fourier matrix and of the DFT. In particular, we consider the eigenvalues of the Fourier matrix with their multiplicities. Further, we present the intimate relations between cyclic convolutions and the DFT. In Sect. 3.3, we show that cyclic convolutions and circulant matrices are closely related and that circulant matrices can be diagonalized by the Fourier matrix. Section 3.4 presents the properties of Kronecker products and stride permutations, which we will need later in Chap. 5 for the factorization of a Fourier matrix. We show that block circulant matrices can be diagonalized by Kronecker products of Fourier matrices. Finally, Sect. 3.5 addresses real versions of the DFT, such as the discrete cosine transform (DCT) and the discrete sine transform (DST). These linear transforms are generated by orthogonal matrices.
更多
查看译文
关键词
discrete
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要