Phospholipid peroxidation in macrophage confers tumor resistance by suppressing phagocytic capability towards ferroptotic cells

Research Square (Research Square)(2023)

引用 0|浏览6
暂无评分
摘要
Ferroptosis holds significant potential for application in cancer therapy. However, ferroptosis inducers are not well cell-specific and can cause phospholipid peroxidation in both tumor and non-tumor cells. This limitation greatly restricts the use of ferroptosis therapy as a safe and effective anticancer strategy. Our previous study demonstrated that macrophages can engulf ferroptotic cells through Toll-like receptor 2 (TLR2). Despite this advancement, the precise mechanism by which phospholipid peroxidation in macrophages affects their phagocytotic prowess during treatment of tumors with ferroptotic agents is still unknown. Here, we determined that phospholipid peroxidation in macrophages impaired their ability to eliminate ferroptotic tumor cells by phagocytosis, ultimately fostering tumor resistance to ferroptosis therapy. Mechanistically, the accumulation of phospholipid peroxidation in the macrophage endoplasmic reticulum (ER) repressed TLR2 trafficking to plasma membrane and caused its retention in the ER by disrupting the interaction between TLR2 and its chaperone CNPY3. Subsequently, this ER-retained TLR2 recruited E3 ligase MARCH6 and initiated the proteasome-dependent degradation. Using phospholipidomics, we identified 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine (SAPE-OOH) as the crucial mediator of these effects. Conclusively, this discovery elucidates a novel molecular mechanism underlying macrophage phospholipid peroxidation-induced tumor resistance to ferroptosis therapy and highlights the TLR2-MARCH6 axis as a potential therapeutic target for cancer therapy.
更多
查看译文
关键词
macrophage confers tumor resistance,phospholipid peroxidation,phagocytic capability,cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要