Role of alpha smooth muscle actin in odontogenic differentiation of dental pulp stem cells

Zhengyu Ma, Pei Kang Shen, Xiaolin Xu,W. Li,Yaoyin Li

European Journal of Oral Sciences(2023)

Cited 0|Views3
No score
Abstract
Pulpotomy is an effective treatment for retaining vital pulp after pulp exposure caused by caries removal and/or trauma. The expression of alpha smooth muscle actin (α-SMA) is increased during the wound-healing process, and α-SMA-positive fibroblasts accelerate tissue repair. However, it remains largely unknown whether α-SMA-positive fibroblasts influence pulpal repair. In this study, we established an experimental rat pulpotomy model and found that the expression of α-SMA was increased in dental pulp after pulpotomy relative to that in normal dental pulp. In vitro results showed that the expression of α-SMA was increased during the induction of odontogenic differentiation in dental pulp stem cells (DPSCs) compared with untreated DPSCs. Moreover, α-SMA overexpression promoted the odontogenic differentiation of DPSCs via increasing mitochondrial function. Mechanistically, α-SMA overexpression activated the mammalian target of rapamycin (mTOR) signaling pathway. Inhibition of the mTOR signaling pathway by rapamycin decreased the mitochondrial function in α-SMA-overexpressing DPSCs and suppressed the odontogenic differentiation of DPSCs. Furthermore, we found that α-SMA overexpression increased the secretion of transforming growth factor beta-1 (TGF-β1). In sum, our present study demonstrates a novel mechanism by which α-SMA promotes odontogenic differentiation of DPSCs by increasing mitochondrial respiratory activity via the mTOR signaling pathway.
More
Translated text
Key words
odontogenic differentiation,smooth muscle actin,pulp
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined