Enhancement of Sulfur Source-Dependent Zn Vacancies in Different Photocatalytic Performances of ZnIn2S4 Nanoparticles

Inorganic Chemistry(2023)

引用 0|浏览4
暂无评分
摘要
This study focuses on the synthesis and investigation of ZnIn2S4 nanoparticle (NP) photocatalysts treated with different sulfur sources, thioacetamide (TAA), or thiourea (TU), to explore their wavelength-dependent photocatalytic activity. The research aims to understand the impact of Zn vacancies present on the surface of ZnIn2S4 NPs. The investigation involves electron spin resonance and in situ X-ray photoelectron spectroscopy to study the photocatalytic activity of ZnIn2S4–TU and ZnIn2S4–TAA NPs, following the characterization of surface morphology and electronic properties using high-resolution transmission electron microscopy and X-ray diffraction. Additionally, the study delves into the wavelength-dependent photocatalytic degradation (PCD) activity of the ZnIn2S4 NPs using 2,5-hydroxymethylfurfural (HMF) across a wide range. Notably, the selective oxidation of HMF using ZnIn2S4–TU NPs resulted in the formation of 2,5-furandicarboxylic acid (FDCA) via 2,5-diformylfuran, with an efficiency exceeding 40% over the broad wavelength range. The research demonstrates that the irradiation wavelength for PCD is influenced by the number of defect structures introduced into the ZnIn2S4 NPs through the sulfur source.
更多
查看译文
关键词
znin<sub>2</sub>s<sub>4</sub>,different photocatalytic performances,source-dependent
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要