S-functionalized 2D V2B as a promising anode material for rechargeable lithium ion batteries

Physical Chemistry Chemical Physics(2023)

Cited 0|Views5
No score
Abstract
The development of novel high specific capacity anode materials is urgently needed for rechargeable metal ion batteries. Herein, S-functionalized V2B as the electrode material for Li/Na/K ion batteries are comprehensively investigated using first-principles calculations. Specifically, V2BS2 was verified with good electrical conductivity via band structure and density of states calculations. Phonon dispersion and ab initio molecular dynamic simulations were performed and confirmed the dynamic and thermal stability of V2BS2. The use of V2BS2 with a high theoretical specific capacity of 606 mA h g-1 for lithium ion batteries (LIBs) due to the bilayer adsorption of Li atoms is encouraging, which is attributed to the double empty orbitals of the S atoms and small lattice mismatch (1.5%) between the Li layers and substrate. Furthermore, dendrite formation would be well prohibited and safety issues for battery operation would be ensured for V2BS2 as electrode materials because of the low open circuit voltage with 0.37 V. The high charge/discharge rate for LIBs is also achievable owing to the high mobility of adatoms on the surface of V2BS2. Our work not only finds use as a promising material for the field of energy storage, but also provides constructive design strategies for developing high performance anode materials for rechargeable metal ion batteries.
More
Translated text
Key words
promising anode material,s-functionalized batteries,lithium
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined