Iterative space-angle discontinuous Galerkin method for radiative transfer equation

Waves in Random and Complex Media(2023)

引用 0|浏览0
暂无评分
摘要
AbstractThe radiative transfer equation (RTE) is an integro-differential equation that describes the radiation energy absorbing, emitting, and scattering in both space and angle, which can be up to five-dimensional problems. It is difficult for a RTE solver to satisfy both accuracy and efficiency (less computational resources) for such high dimensional problems. In this paper, an iterative solver for one-dimensional cylindrical radiative transfer problems using the space-angle discontinuous Galerkin (DG) method is developed to achieve both accuracy and efficiency. The iterative solver is based on the angular decomposition (AD) scheme, which slices the spatial-angular domain into slabs and decouples the angular integration between slabs. Both Jacobi and successive over-relaxation (SOR) iterative schemes are investigated by numerical analysis and examples. The comparison of the two iterative schemes suggests that an appropriate relaxation factor for the SOR method may accelerate the convergence. Finally, the iterative scheme is more efficient than the direct solution of the system both in terms of memory usage and computational time, especially for finer meshes.Keywords: Radiate transfer equationdiscontinuous galerkinspace-angleiterative schemejacobi methodsuccessive over-relaxation methodangular decomposition Disclosure statementNo potential conflict of interest was reported by the author(s).
更多
查看译文
关键词
discontinuous galerkin method,space-angle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要