Relaxation enhancement by microwave irradiation may limit dynamic nuclear polarization

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2024)

引用 0|浏览0
暂无评分
摘要
Dynamic nuclear polarization enables the hyperpolarization of nuclear spins beyond the thermal-equilibrium Boltzmann distribution. However, it is often unclear why the experimentally measured hyperpolarization is below the theoretically achievable maximum polarization. We report a (near-) resonant relaxation enhancement by microwave (MW) irradiation, leading to a significant increase in the nuclear polarization decay compared to measurements without MW irradiation. For example, the increased nuclear relaxation limits the achievable polarization levels to around 35% instead of hypothetical 60%, measured in the DNP material TEMPO in 1H glassy matrices at 3.3 K and 7 T. Applying rate-equation models to published build-up and decay data indicates that such relaxation enhancement is a common issue in many samples when using different radicals at low sample temperatures and high Boltzmann polarizations of the electrons. Accordingly, quantification and a better understanding of the relaxation processes under MW irradiation might help to design samples and processes towards achieving higher nuclear hyperpolarization levels. Micro-wave (MW) irradiation of the electrons accelerates the nuclear spin relaxation. For MW irradiation at the frequency of zero dynamic-nuclear polarization (DNP) enhancement, this can be observed directly.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要