Effect of next-nearest neighbor hopping on the single-particle excitations

Harun Al Rashid, Dishan Singh

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
In the half-filled one-orbital Hubbard model on a square lattice, we study the effect of next-nearest neighbor hopping on the single-particle spectral function at finite temperature using an exact-diagonalization + Monte-Carlo based approach to the simulation process. We find that the pseudogap-like dip, existing in the density of states in between the N\'{e}el temperature $T_N$ and a relatively higher temperature $T^*$, is accompanied with a significant asymmetry in the hole- and particle-excitation energy along the high-symmetry directions as well as along the normal-state Fermi surface. On moving from ($\pi/2, \pi/2$) toward $(\pi, 0)$ along the normal state Fermi surface, the hole-excitation energy increases, a behavior remarkably similar to what is observed in the $d$-wave state and pseudogap phase of high-$T_c$ cuprates, whereas the particle-excitation energy decreases. The quasiparticle peak height is the largest near ($\pi/2, \pi/2$) whereas it is the smallest near $(\pi, 0)$. These spectral features survive beyond $T_N$. The temperature window $T_N \lesssim T \lesssim T^*$ shrinks with an increase in the next-nearest neighbor hopping, which indicates that the next-nearest neighbor hopping may not be supportive to the pseudogap-like features.
更多
查看译文
关键词
excitations,next-nearest,single-particle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要