Whole organ volumetric sensing Ultrasound Localization Microscopy for characterization of kidney structure

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览4
暂无评分
摘要
Glomeruli are the filtration units of the kidney and their function relies heavily on their microcirculation. Despite its obvious diagnostic importance, an accurate estimation of blood flow in the capillary bundle within glomeruli defies the resolution of conventional imaging modalities. Ultrasound Localization Microscopy (ULM) has demonstrated its ability to image in-vivo deep organs in the body. Recently, the concept of sensing ULM or sULM was introduced to classify individual microbubble behavior based on the expected physiological conditions at the micrometric scale. In the kidney of both rats and humans, it revealed glomerular structures in 2D but was severely limited by planar projection. In this work, we aim to extend sULM in 3D to image the whole organ and in order to perform an accurate characterization of the entire kidney structure. The extension of sULM into the 3D domain allows better localization and more robust tracking. The 3D metrics of velocity and pathway angular shift made glomerular mask possible. This approach facilitated the quantification of glomerular physiological parameter such as an interior traveled distance of approximately 7.5 microns within the glomerulus. This study introduces a technique that characterize the complete kidney phisiology which can serve as a method to facilite pathology assessment. Furthermore, its potential for clinical relevance could serve as a bridge between research and practical application, leading to innovative diagnostics and improved patient care.
更多
查看译文
关键词
ultrasound localization microscopy,whole organ volumetric,kidney structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要