Chrome Extension
WeChat Mini Program
Use on ChatGLM

Dynamics-informed deconvolutional neural networks for super-resolution identification of regime changes in epidemiological time series

Science Advances(2023)

Cited 0|Views1
No score
Abstract
The ability to infer the timing and amplitude of perturbations in epidemiological systems from their stochastically spread low-resolution outcomes is crucial for multiple applications. However, the general problem of connecting epidemiological curves with the underlying incidence lacks the highly effective methodology present in other inverse problems, such as super-resolution and dehazing from computer vision. Here, we develop an unsupervised physics-informed convolutional neural network approach in reverse to connect death records with incidence that allows the identification of regime changes at single-day resolution. Applied to COVID-19 data with proper regularization and model-selection criteria, the approach can identify the implementation and removal of lockdowns and other nonpharmaceutical interventions (NPIs) with 0.93-day accuracy over the time span of a year.
More
Translated text
Key words
epidemiological time series,deconvolutional neural networks,time series,neural networks,dynamics-informed,super-resolution
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined