Tdcosmo

Astronomy and Astrophysics(2023)

引用 1|浏览23
暂无评分
摘要
Time-delay strong lensing (TDSL) is a powerful probe of the current expansion rate of the Universe. However, in light of the discrepancies between early and late-time cosmological studies, efforts revolve around the characterisation of systematic uncertainties in the methods. Here, we focus on the mass-sheet degeneracy (MSD), which is considered a significant source of systematics in TDSL, and aim to assess the constraining power provided by IFU stellar kinematics. We approximate the MSD with a cored, two-parameter extension to the lensing mass profiles (with core radius $r_{\rm c}$ and mass-sheet parameter $\lambda_{\rm int}$). In addition, we utilise mock IFU stellar kinematics of time-delay strong lenses, given the prospects of obtaining such data with JWST. We construct joint strong lensing and stellar dynamical models, where the time delays, mock imaging and IFU observations are used to constrain the mass profile of lens galaxies, and yield joint constraints on the time-delay distance ($D_{\Delta t}$) and angular diameter distance ($D_{\rm d}$) to the lens. We find that mock JWST-like stellar kinematics constrain the internal mass sheet and limit its contribution to the uncertainties of $D_{\Delta t}$ and $D_{\rm d}$, each at the < 4% level, without assumptions on the background cosmological model. These distance constraints would translate to a < 4% precision measurement on $H_{\rm 0}$ in flat $\Lambda CDM$ for a single lens. Our study shows that IFU stellar kinematics of time-delay strong lenses will be key in lifting the MSD on a per lens basis, assuming reasonable core sizes. However, even in the limit of infinite $r_{\rm c}$, where $D_{\Delta t}$ is degenerate with $\lambda_{\rm int}$, stellar kinematics of the deflector, time delays and imaging data will provide powerful constraints on $D_{\rm d}$, which becomes the dominant source of information in the cosmological inference.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要