Electron-field instability: Excitation of electron plasma waves by an electric field

PHYSICS OF PLASMAS(2023)

引用 0|浏览3
暂无评分
摘要
Electric fields are commonplace in plasmas and affect transport by driving currents and, in some cases, instabilities. The necessary condition for instability in collisionless plasmas is commonly understood to be described by the Penrose criterion, which quantifies a sufficient relative drift between different populations of particles that must be present for wave amplification via inverse Landau damping. For example, electric fields generate drifts between electrons and ions that can excite the ion-acoustic instability. Here, we use particle-in-cell simulations and linear stability analysis to show that the electric field can drive a fundamentally different type of kinetic instability, named the electron-field instability. This instability excites electron plasma waves with wavelengths greater than or similar to 30 lambda(De), has a growth rate that is proportional to the electric field strength, and does not require a relative drift between electrons and ions. The Penrose criterion does not apply when accounting for the electric field. The large value of the observed frequency, near the electron plasma frequency, further distinguishes it from the standard ion-acoustic instability, which oscillates near the ion plasma frequency. The ubiquity of macroscopic electric fields in quasineutral plasmas suggests that this instability is possible in a host of systems, including low-temperature and space plasmas. In fact, damping from neutral collisions in such systems is often not enough to completely damp the instability, adding to the robustness of the instability across plasma conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要