Bulk rna-seq deconvolution of image-localized higgrade glioma biopsies reveals meaningful cellular states

Neuro-oncology(2023)

引用 0|浏览17
暂无评分
摘要
Abstract AIMS High-grade glioma continues to have dismal survival with current standard-of-care treatment, owing in part to its intra- and inter-patient heterogeneity. Typical diagnostic biopsies are taken from the dense tumor core to determine the presence of abnormal cells and the status of a few key genes (e.g. IDH1, MGMT). However, the tumor core is typically resected, leaving behind possibly genetically, transcriptomically and/or phenotypically distinct invasive margins that repopulate the disease. As these remaining populations are the ones ultimately being treated, it is important to know their compositional differences from the tumor core. We aim to identify the phenotypic niches defined by the relative composition of key cellular populations and understand their variation amongst patients. METHOD We have established an image-localized research biopsy study, that samples from both the invasive margin and tumor core. From this protocol, we currently have 202 samples from 58 patients with available bulk RNA-Seq, collected between Mayo Clinic and Barrow Neurological Institute. Using a single-cell reference dataset from our collaborators at Columbia University, we used CIBERSORTx, a deconvolution method, to predict relative abundances of 7 normal, 6 glioma, and 5 immune cell states for each sample. RESULTS We find that these cell state abundances connect to patient survival and show regional differences. For example, proneural glioma states were higher in invasive regions, whereas proliferative and mesenchymal states were higher in the tumor core. CONCLUSIONS Our analysis demonstrates a need to characterize the residual tissue following glioma resection to better understand the recurrent disease.
更多
查看译文
关键词
rna-seq,image-localized
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要