An ultraviolet-driven rescue pathway for oxidative stress to eye lens protein human gamma-D crystallin

COMMUNICATIONS CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the structural basis of this longevity despite oxidative aging and environmental stressors including ultraviolet radiation (UV). Here we present crystallographic structures evidencing a UV-induced crystallin redox switch mechanism. The room-temperature serial synchrotron crystallographic (SSX) structure of freshly prepared crystallin mutant (R36S) shows no post-translational modifications. After aging for nine months in the absence of light, a thiol-adduct (dithiothreitol) modifying surface cysteines is observed by low-dose SSX. This is shown to be UV-labile in an acutely light-exposed structure. This suggests a mechanism by which a major source of crystallin damage, UV, may also act as a rescuing factor in a finely balanced redox system. Understanding the stability of the eye lens protein human gamma-D crystallin (HGD) is essential to developing tools to prevent the formation of cataracts, however, structural investigations of the response of HGD to ultraviolet radiation are lacking. Here, the authors use continuous illumination serial crystallography to directly probe the mechanism of R36S HGD in response to ultraviolet radiation damage.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要